

GDS: A SWIFT-SPECIALISED TRGAN FOR SYNTHETIC FINANCIAL TRANSACTION DATA GENERATION

11^e Conférence Nationale sur les Applications Pratiques de l'Intelligence Artificielle, Dijon

Romain A. Alfred, & Thomas Lemonnier SKAIZen Lab, SKAIZen Group, Paris, France

June 30th, 2025

- ▶ Introduction
- ► State of the art
- ▶ Modelisation
- ▶ Results
- ▶ Conclusion
- ▶ References
- ► Annexes

- Why generate SWIFT messages?
- SWIFT message: format of a banking transaction transiting through the SWIFT network.
- In Europe: financial institutions are subject to a strict customer data regulations (GDPR: General Data Protection Regulation).
- Consequences: lack of testing and training data.
 - Non-coverage of all test cases (for development project),
 - Difficulty to obtain generalisable AI model.

- To generate large volume of data from small samples,
- To respect the statistical structure of real data.
- Example: to reproduce a typical week of SWIFT data flows using only a few messages.
- Applications:
 - Load test,
 - Robustness load,
 - Fraud detection.
 - Anti-money laundering (AML) and combating the financing of terrorism (CFT).

Scientific challenges

1 Introduction

- Confidentiality and fidelity,
- Heterogeneity of data types,
 - A SWIFT message combines categorical and continuous data, as well as unstructured fields.
- Non-Gaussian distributions,
 - Continuous variables are often multimodals (transaction amounts, temporality) whereas neural networks are most often optimised for Gaussian inputs.
- Complex relationships,
 - Strong dependence of transaction amounts to time and counterparties,
 - Strong dependence of missing data to SWIFT message typologies.
- High cardinalities and class imbalance,
 - Difficulty to accurately generate variables with low modalities (fraud detection, AML-CFT): mode collapse.

- ▶ Introduction
- ► State of the art
- ▶ Modelisation
- ▶ Results
- ▶ Conclusion
- ► References
- ► Annexes

VAE 2 State of the art

- Variational Auto-Encoders (VAEs): generative models based on learning of latent data representations (Kingma & Welling, 2019).
 - Step 1 encoder: transformation of data into latent space using a neural network,
 - Step 2 decoder: generation of synthetic data from latent spaces by a neural network.

Figure: Modelling of the data processing of a Variational Auto-Encoder. Reproduced from Kingma & Welling (2019: 333).

Diffusion models

2 State of the art

- Diffusion models: implicit generative models (Ho & Abbeel, 2020).
 - Step 1 chain addition of Gaussian noise,
 - For each addition: noise prediction by a neural network,
 - Step 2 denoising using the precedent noise assessments.

Figure: Diffusion model.

Graph models

2 State of the art

- Graph recurrent neural networks (GRNNs) (You et al., 2018).
 - Each node (a counterparty) has a hidden state that captures its transaction history.
 - Each node is associated with a RNN which is updated according to the transactions performed.
- Variational Graph Auto-Encoders (VGAEs): adaptation of VAE to graphs (Kipf & Welling, 2016).
 - Step 1 encoder: production of a latent space for each node by a GNN,
 - Step 2 decoder: generation of a synthetic graph from the latent spaces by a GNN.
- Graph Generative Adversarial Networks (GraphGANs): adaptation of GAN to graphs (Wang et al., 2018).
 - Step 1 generator: generation of neighbouring nodes knowing an input node,
 - Step 2 discriminator: prediction of the probability that a node is the neighbour of the input node.

- Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).
 - Step 1 generator: generation of synthetic data by a neural network trying to mislead the discriminator.
 - Step 2 discriminator: prediction of the probability that a data is real.

Figure: GAN.

- Conditional Tabular Generative Adversarial Networks (CGANs): to address the problem of the generation of under-represented modalities (Xu & Veeramachaneni, 2018; Xu et al., 2019).
 - Conditional sampling,
 - Sampling by diversified mini-batches.
- High proportion of pre-parameterisation.
- CTAB-GAN: improving of the CGAN by Zhao et al. (2021).
 - Use of Gaussian mixture models during the data pre-processing.

- Directional Acyclic Tabular Generative Adversarial Networks (DAT-GANs): includes an "expert" dimension (Lederrey et al., 2021).
 - Addition of a directional acyclic graph containing information about the causal links between input variables,
 - Generation of "root" variables, then generation of variables linked to the "root" variables by a causal relationship, and so on.

- Transactional Generative Adversarial Networks (TRGANs): specialising in synthetic transactions generation (Zakharov et al., 2024).
 - Step 1 creation of a conditional vector composed of the encoded real data, along with the date variables which are mathematically transformed.
 - Real data: addition of a transaction frequency variable,
 - Date variable: transformation by cosine and sine functions to introduce a notion of cyclicity.
 - Step 2 generator,
 - Step 3 evaluation of the generator by a discriminator,
 - Step 4 synthetic data generation by a supervisor on the basis of real and generator's synthetic data,
 - Step 5 evaluation of the supervisor's results by the discriminator.

- The non-graph generative models are mainly oriented towards computer vision.
- The generative graph models are mainly:
 - Molecular analysis oriented,
 - Focused on relational structures (edges) rather than on variables.
- Among the transaction-oriented models: no emphasis on the relational aspect.
- Selection of the TRGAN for:
 - Its introduction of the notion of temporal cyclicity of transactions,
 - Its dual learning principle (generator then supervisor).

- ▶ Introduction
- ▶ State of the art
- ► Modelisation
- ▶ Results
- ► Conclusion
- ► References
- ► Annexes

• Construction of a TRGAN (Zakharov et al., 2024) customised for SWIFT messages.

Figure: GDS model.

• Construction of a TRGAN (Zakharov et al., 2024) customised for SWIFT messages.

Figure: GDS model.

- Existence of multiple SWIFT message formats. For the ISO 15022 format:
 - MT1**: customer payments and cheques,
 - MT2**: financial institution transfers,
 - MT3**: foreign exchange, money markets and derivatives,
 - MT4**: collateral claim,
 - MT5**: securities markets,
 - MT6**: commodities, syndication and reference data,
 - MT7**: documentary credits and guarantees,
 - MT8**: travellers cheques,
 - MT9**: cash management and customer status.

Data pre-processing 3 Modelisation

- According to the methodology of Zakharov et al. (2024) used to pre-process data, we have a division of real data into three categories for three different pre-processing neural networks:
 - Continuous,
 - Categorial with high modalities,
 - Categorial with low modalities.

Figure: Real data.

- Computing of additional variables:
 - Initiator/beneficiary couple: introduction of a relational dimension,
 - Initiator frequency and beneficiary frequency: introduction of a customer behaviour dimension,
 - Schedule, week day, week, year: addition of precision in the temporal dimension of the generation.

Figure: Real data.

Data pre-processing

3 Modelisation

Figure: Pre-processing of real data.

Data pre-processing

3 Modelisation

Figure: Construction of the conditional vector.

• TRGAN model of Zakharov et al. (2024) consists of a sequential passage through a generator, a discriminator, a supervisor, then a second time through the discriminator, in an antagonistic training approach.

Figure: TRGAN (Zakharov et al., 2024).

- ▶ Introduction
- ▶ State of the art
- ▶ Modelisation
- ► Results
- ▶ Conclusion
- ► References
- ► Annexes

Metrics for continuous variables

- 4 Results
- Let X be real data, \hat{X} synthetic data, X_j a variable of the real data, $n = dim(X_j)$, (n, p) = dim(X) and F_{X_j} the distribution function of the variable X_j .
- Mean absolute percentage error:

$$MAPE_{j} = \frac{100}{n} \sum_{i=1}^{n} \frac{X_{ij} - \hat{X}_{ij}}{X_{ij}}$$

• Kolmogorov-Smirnov test (Hodges, 1958):

$$KS_j = \frac{1}{n} \sup_{x} |F(\hat{X}_{ij} \le x) - F(\hat{X}_{ij} \le x)|$$

Metrics for categorical variables 4 Results

• χ^2 test statistic:

$$\chi_j^2 = \frac{1}{100} \sum_{x \in modalities(X_i)} (F(\hat{X}_{ij} = x) - F(X_{ij} = x))^2$$

• Kullback-Leibler divergence (1951):

$$KL_j = \sum_{x \in modalities(X_i)} F(\hat{X}_{ij} = x) ln \frac{F(\hat{X}_{ij} = x)}{F(X_{ij} = x)}$$

Global metric

• Similarity score:

$$s = \frac{1}{2p} \sum_{j=1}^{p} \left(\left(\left(1 - \frac{MAPE_j}{100} \right)^+ + KS_j \right) \mathbf{1}_{\{\mathbf{R}\}} - \left(\left(1 - \frac{\chi_j^2}{100} \right)^+ + KL_j \right) \mathbf{1}_{\{\mathbf{String}\}} \right) \right)$$

- Number of observations: 10 000 SWIFT messages,
- Number of variables: 11,
- 59% of MT103 and 41% of MT202,
- Continuous variable: transaction amount,
- Categorial variables=: message type, initiator, beneficiary, date, schedule, sender, receiver, currency, fraud, transaction reference,
- Objective: to generate 2 millions of messages.

Univariate and multivariate results

4 Results

• Similarity score: 99.585%,

• $KS_{Amount} = 0.0398$.

Différence des Corrélations (Réelle - Synthétique)

Originator	0	0.04324495	-0.02381661	-0.0999511	-0.1609677	-0.04376505	-0.004944448	-0.01072261	-0.3547278	0.02025631	1
Sender	0.04324495	0	-0.02194392	-0.1123518	-0.1563858	-0.04376374	-0.003287369	-0.002292697	-0.3219987	0.01484719	
Receiver	-0.02381661	-0.02194392	0	0.05869428	-0.001838543	0.006130999	-0.05197954	-0.1675487	-0.1099415	0.01369106	0.5
Beneficiary	-0.0999511	-0.1123518	0.05869428	0	-0.01625657	0.01675086	0.002379114	-0.06351123	-0.08223024	0.03041623	
Date	-0.1609677	-0.1563858	-0.001838543	-0.01625657	0	-0.004722803	-0.03272004	0.2252684	-0.4525308	0.01635531	
Time	-0.04376505	-0.04376374	0.006130999	0.01675086	-0.004722803	0	0.002477824	0.005582936	-0.01042	301.2995µ	0
Type	-0.004944448	-0.003287369	-0.05197954	0.002379114	-0.03272004	0.002477824	0	0.01524166	-0.1188554	-0.04599615	
Currency	-0.01072261	-0.002292697	-0.1675487	-0.06351123	0.2252684	0.005582936	0.01524166	0	0.1693431	-876.4004µ	-0.5
Value	-0.3547278	-0.3219987	-0.1099415	-0.08223024	-0.4525308	-0.01042	-0.1188554	0.1693431	0	0.04678552	
Flag	0.02025631	0.01484719	0.01369106	0.03041623	0.01635531	301.2995µ	-0.04599615	-876.4004µ	0.04678552	0	_1
Originator Sender Receiver Beneficiary Date Time Type Currency Value Flag Variables constantes (exclues de la corrélation) : Transaction Ref											

Figure: Difference between correlation matrices for real and synthetic data.

Results graph view

Figure: Joint distribution of real and synthetic data.

- ▶ Introduction
- ► State of the art
- ▶ Modelisation
- ▶ Results
- ► Conclusion
- ▶ References
- ► Annexes

- Relatively well-preserved graph structure,
- Efficiency of our TRGAN model adjusted to SWIFT data,
- Required adjustments:
 - Correlation between the amount and date variables (over-correlation, and therefore also between the currency and date variables),
 - Temporal distribution of data (good preservation of the intra-daily distributions but improvement required at the daily and supra-daily levels).
- Development of a DAT-TRGAN: combination of a DAT-GAN and a TRGAN to include causal relationships between variables,
 - Particularly interesting regarding the sequencing of SWIFT messages of different categories.
- To divide the generation according to the main typologies of SWIFT messages,
- Development of a metric combining assessment of the relational structure, and univariate and multivariate joint distributions.

- ▶ Introduction
- ▶ State of the art
- ▶ Modelisation
- ▶ Results
- ▶ Conclusion
- ► References
- ► Annexes

- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. *Advances in Neural Information Processing Systems*, 3(11).
- Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan & H. Lin (Eds.), NIPS'20: proceedings of the 34th International Conference on Neural Information Processing Systems (pp. 6840-6851), Red Hook: Curran Associates Inc.
- Hodges, J. L. Jr. (1958). The significance probability of the Smirnov Two-Sample Test. *Arkiv flur Matematik*, 3(43): 469-486.
- Kingma, D. P., & Welling, M. (2019). An introduction to Variational Autoencoders. Foundations and Trends in Machine Learning, 12(4): 307-392.
- Kipf, T., & Welling, M. (2016). *Variational Graph Auto-Encoders* [Conference paper]. Bayesian Deep Learning: NIPS 2016 Workshop, Barcelona.

- Kullback, S., & Leibler, R. (1951). On information and sufficiency. *Annals of Mathematical Statistics*, 22: 79-86.
- Lederrey, G., Hillel, T., & Bierlaire, M. (2021). DATGAN: integrating expert knowledge into deep learning for population synthesis. In *Proceedings of the* 21st Swiss Transport Research Conference (pp. 1-21). Ascona: Swiss Transport Research Conference.
- Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., & Guo, M. (2018). GraphGAN: graph representation learning with Generative Adversarial Nets. In S. A. McIlraith & K. Q. Weinberger (Eds.), AAAI'18/IAAI'18/EAAI'18: proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence (pp. 2508-2515). New Orleans: AAAI Press.

- Xu, L., & Veeramachaneni, K. (2018). Synthesizing tabular data using Generative Adversarial Networks [Work paper].
- Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling tabular data using Conditional GAN [Papier de conférence]. 33^{rd} Conference on Neural Information Processing Systems 2019, Vancouver.
- You, J., Ying, R., Ren, X., Hamilton, W. L., & Leskovec, J. (2018).
 GraphRNN: generating realistic graphs with Deep Auto-Regressive Models. In J. Dy & A. Krause (Eds.), Proceedings of the 35th International Conference on Machine Learning (ICML 2018), volume 6 (pp. 4320-4329). Red Hook: Curran Associates Inc.

- Zakharov, K., Stavinova, E., & Lysenko, A. (2024). TRGAN: a Time-Dependent Generative Adversarial Network for synthetic transactional data generation. In *ICSeB'23: proceedings of the 2023* 7th International Conference on Software and E-Business (pp. 1-8). New York: Association for Computing Machinery.
- Zhao, Z., Kunar, A., Birke, R., & Chen, L. Y. (2021). CTAB-GAN: effective table data synthesizing. *Proceedings of the* 13th Asian Conference on Machine Learning, PMLR, 157: 97-112.

- ▶ Introduction
- ▶ State of the art
- ▶ Modelisation
- ▶ Results
- ► Conclusion
- ► References
- ► Annexes

Figure: Pre-processing neural network of continuous variables (Zakharov et al., 2024).

Figure: Pre-processing neural network of categorical variables with high modalities (Zakharov et al., 2024).

Figure: Pre-processing neural network of categorical variables with low modalities (Zakharov et al., 2024).

Training 7 Annexes

Figure: Generator (Zakharov et al., 2024).

Figure: Discriminator (Zakharov et al., 2024).

Training 7 Annexes

Figure: Supervisor (Zakharov et al., 2024).

Comparaison de Value (Bleu=Réel, Rouge=Synthétique)

Figure: Real and synthetic distributions of the amount variable.

Comparaison de Date (Bleu=Réel, Rouge=Synthétique)

Figure: Real and synthetic distributions of the date variable.

Figure: Real and synthetic distributions of the schedule variable.

How to cite

Alfred, Romain A., & Lemonnier, Thomas (2025). GDS: a SWIFT-specialised TRGAN for synthetic financial transaction data generation [Conference presentation]. 11^e Conférence Nationale sur les Applications Pratiques de l'Intelligence Artificielle, Dijon.